ORIGINAL

RECEIVED

KELLY J. BARR, ESQ.

SALT RIVER PROJECT

P. O. Box 52025 Phoenix, AZ 85072-2025 (602) 236-5262 Fax (602) 236-3458 kjbarr@srpnet.com 2009 APR -1 P 3: 28

Manager, Regulatory Affairs & Contracts

AZ CORP COMMISSION DOCKET CONTROL

HAND-DELIVERED

April 1, 2009

Docket Control
Arizona Corporation Commission
1200 West Washington Street
Phoenix, AZ 85007-2996

RE: Resource Planning - Historical Information - Docket No. E-00000H-09-0113

To Whom It May Concern:

In accordance with the Arizona Corporation Commission's (the "Commission") request in Decision No. 56381, issued on March 9, 1989, in Docket No. U-2217-88-131, and amended by Procedural Order in Docket No. E-00000A-95-0506, Salt River Project Agricultural Improvement and Power District ("SRP") voluntarily provides the accompanying resource planning information. The information, which consists of demand side data and supply side data, has been assembled consistent with the Commission's Resource Planning Rules (A.A.C. R14-2-701 and R14-2-703).

SRP is providing an original and thirteen (13) copies of the information to Docket Control. Confidential and proprietary information has been omitted.

Please address any inquiries regarding the enclosed information to Jana Brandt at (602) 236-5028.

Sincerely,

Kelly J. Barr

Enclosures

Arizona Corporation Commission DOCKETED

APR -1 2009

DOCKETED BY

50

OPEN TO PUBLIC INSPECTION – MARCH 2009 FILING

- A. <u>Demand Side Data</u>: Requested within 90 days of March 9, 1989 and by April 1 of each year thereafter:
- A.1. Hourly demand for previous calendar year disaggregated by:
- A.1.a. Sales to End Users.

SRP does not maintain hourly load data for sales to end-users. No data has been submitted.

A.1.b. Sales for Resale.

SRP does not maintain a summary of hourly demand for sales for resale. No data has been submitted.

A.1.c. Energy losses.

SRP does not maintain hourly load data for energy losses. Energy losses for 2008 are listed in B.2.g.

A.1.d. Other disposition of energy such as energy furnished without charge and energy used by the Utility.

No data has been submitted. SRP does not maintain hourly load data for energy used by the Utility and SRP does not furnish energy without charge.

One of the covenants included in SRP's Bond Offering Official Statement is:

No Free Service: The District will not furnish or supply power or energy free of charge to any person, firm or corporation, public or private, and will promptly enforce payment of any and all accounts owing to the District by reason of the ownership and operation of the Electric System, to the extent dictated by sound business practice.

A.3. Coincident peak demand (megawatts) and energy demand (megawatt hours) by month for the previous 10 calendar years disaggregated by:

Data for calendar years prior to 2008 was provided in previous submittals. Unless otherwise noted, the data supplied in this submittal is for calendar year only.

S:\Regulatory Submittals\ACC\ACC2008\Historical Data Submittal\Notebook Public Inspection Copy (PIC)\A1-A9 PIC2008.docx

A - 1

3/20/2009

A.3.a. Customer Class.

No data has been submitted.

A.3.b. Nonresidential customers by type of business.

No data has been submitted.

 $S: Regulatory\ Submittals \ ACC\ ACC 2008\ Historical\ Data\ Submittal\ Notebook\ Public\ Inspection\ Copy\ (PIC)\ A1-A9_PIC 2008. docxx$

A - 2

OPEN TO PUBLIC INSPECTION - MARCH 2009 FILING

B. Supply Side Data:

B.1. For each generating Unit and purchased power contract for the previous calendar year:

B.1.a. In-service date.

Reference Attachment B.1.a. The in-service dates provided in Attachment B.1.a are the same as those provided in previous SRP voluntary statewide data submittals.

B.1.b. Book life or contract period.

<u>Book Life</u>, as defined by the ACC is: The expected time period over which a power supply source will be available for use by the Utility. Per this definition, none of SRP's existing resources are planned for retirement.

<u>Contract Period</u>: SRP's major purchased power contracts, Arizona Power Authority (APA), Colorado River Storage Project (CRSP), Parker Davis (P-D), Arizona Electric Power Cooperative (AEPCO), Tucson Electric Power Company (TEPCO), and Navajo Surplus had the following contract periods during 2008:

APA: June 1, 1987 through September 30, 2017.

CRSP: October 1, 1989 through September 30, 2024.

P-D: March 1988 through September 30, 2008.

AEPCO: June 1, 1990 through December 31, 2010.

TEPCO: June 1, 1990 through May 31, 2011.

NAVAJO SURPLUS: (150 MW and 200 MW Contracts): May 1, 1993

through September 30, 2011.

NAVAJO SURPLUS: (CAWCD Contract): June 1, 1994 through

September 30, 2011.

S:\\Regulatory Submittals\ACC\ACC2008\Historical Data Submittal\\Notebook Public Inspection Copy (PIC)\B1-B5_PIC2008.docx

COUNTERPARTY A*: (25 MW) Sept 2006 – Dec 2009

COUNTERPARTY B*: (25 MW) July-Sept, 2006-2009

(25 MW) July-Sept, 2006-2009 (50 MW) July-Sept, 2006-2009

COUNTERPARTY C*: (25 MW) July-Sept, 2004-2008

(25 MW) July-Sept, 2004-2008

COUNTERPARTY D*: (25 MW) Jan-Dec, 2005-2008

COUNTERPARTY E*: (25 MW) Oct 2006 – Dec 2009

COUNTERPARTY F*: (10 MW) June 2008 - Dec 22027

COUNTERPARTY G*: (100 MW) Sept 1, 2006 – Sept 30, 2036

* Counterparty names are withheld due to confidentiality provisions in the contracts

B.1.c. Capacity in megawatts. (SRP share only)

Reference Attachment B.1.c. Attachment B.1.c. contains a summary of SRP generating unit characteristics. The 'summer' period referenced in this Attachment is defined as the period of May 1 through October 31. The 'winter' period refers to all other months.

B.1.d. Maximum unit or contract Capacity by hour, day, or month if such Capacity varies over the year.

No data has been submitted.

B.1.e. Forced outage rate of generating units.

No data has been submitted.

B.1.f. Average heat rate of generating Units and, if available, heat rates at selected output levels.

No data has been submitted.

 $S: \ \ Data \ Submittal \ \ \ Public \ Inspection \ Copy \ (PIC) \ \ B1-B5_PIC2008. docx$

B - 3

3/20/2009

B.1.g. Fuel cost for generating Units in dollars per million Btu for each type of fuel.

Reference Attachment B.1.g. Fuel costs for SRP generating units are summarized in Attachment B.1.g. The fuel costs depicted reflect the costs attributed to the purchase of fuel only and do not include costs attributed to fuel handling.

B.1.h. Other variable Operating and Maintenance costs for generating Units in dollars per megawatt hour.

No data has been submitted.

B.1.i. Purchased power energy costs for contract purchases in dollars per megawatt hour.

The following energy rates were in effect during the 2008 calendar year for SRP's major purchased power contracts:

APA: \$15.79/MWh, January through September

\$16.09/MWh, October through December

CRSP: \$ 10.43/MWh, January through September

\$ 11.06/MWh, October through December

P-D: \$4.76/MWh, January through December

AEPCO: \$19.88/MWh, January through April

\$20.08/MWh, May through August

\$23.46/MWh, September through December

TEPCO: \$22.41/MWh, January through April

\$27.36/MWh, May through August

\$23.97/MWh, September through December

NAVAJO SURPLUS (CAWCD Contract):

\$31.25/MWh, January through December

B.1.j. Fixed Operating and Maintenance costs of generating Units in dollars per megawatt for the year.

 $S: \ \ S: \ \ Data \ Submittal \ \ \ Public \ Inspection \ \ Copy \ (PIC) \ \ B5_PIC2008. docx$

B - 4 3/20/2009

Actual fixed O&M costs are not readily available. For accounting purposes, SRP tracks total O&M only.

B.1.k. Demand charges for purchased power.

The following demand charges were in effect during the 2007 calendar year for SRP's major purchased power contracts:

APA: \$2.46/kW-Month, January through September

\$2.37/kW-Month, October through December

CRSP: \$4.43/kW-Month, January through September

\$4.70/kW-Month, October through December

P-D: \$1.74/kW-Month, January through December

AEPCO: \$15.95/kW-Month, January through December

TEPCO: \$18.51/kW-Month, January through December

NAVAJO SURPLUS (150 MW and 200 MW Contracts):

\$6.00/kW-Month, January through December

NAVAJO SURPLUS (CAWCD Contract):

\$4.67/kW-Month, January through December

Please note: the CRSP demand charge is applied to the maximum seasonal schedule regardless of the actual monthly demand. The CRSP summer season is April through September and the CRSP winter season is October through March. All other purchased power demand charges can be applied to the actual monthly demands incurred.

S:\\Regulatory Submittals\ACC\ACC2008\Historical Data Submittal\\Notebook Public Inspection Copy (PIC)\B1-B5_PIC2008.docx

B.1.l. Fuel type(s) for generating units.

Reference Attachment B.1.1. The fuel type data provided in Attachment B.1.1 is the same as the data provided in previous SRP voluntary statewide data submittals.

B.1.m. Minimum capacity at which the unit would be run or power must be purchased.

No data has been submitted.

B.1.n. Whether, under standard operating procedures, the generating Unit must be run if it is available to run.

Reference Attachment B.1.c. SRP's must run units are identified on Attachment B.1.c.

B.1.o. Maintenance Schedules for SRP generating Units.

Reference Attachment B.1.o.#1 The maintenance dates for SRP participation generating units during calendar year 2008 are identified on Attachment B.1.o.

The maintenance dates for SRP wholly owned generating units during calendar year 2008 are also identified on Attachment B.1.o.#1.

B.1.p. Other data related to generation Units and purchased power contracts, which the utility uses in its production, planning and supply models.

Reference Attachment B.1.p. contains the "Monthly Power Plant Report" for calendar year 2008. In calendar year 2007, the "Monthly Power Plant Report" report filed by SRP in the EIA-906 was discontinued.

B.2. For the power supply system for the previous calendar year a description of:

B.2.a. Unit commitment procedures.

SRP's unit commitment procedures incorporate the following items, all of which influence the choice of generating units for operation.

- · Almost all coal units are considered must run units
- · Minimum up and down times for gas/oil-fired units
- · Relative fuel prices and fuel supplies

S:\\Regulatory Submittals\ACC\ACC2008\Historical Data Submittal\\Notebook Public Inspection Copy (PIC)\\B1-B5 PIC2008.docx

B - 6 3/20/2009

- Need for system regulation and voltage control
- · Spinning reserve requirements
- Unit heat rates and incremental O&M rates
- · Availability of firm purchases
- Firm commitments to others

B.2.b. Production Cost.

SRP Production Costs for the 2008 calendar year were \$1,418,056,720. This value includes fuel, purchased power, interchange energy and railcar lease payments, but does not include plant O&M, fuel handling, transmission expenses or cost of falling water.

B.2.c. Reserve Requirements.

During 2008 SRP targeted an Installed Reserve margin of 12%.

B.2.d. Spinning Reserve.

During 2008 SRP utilized a Spinning Reserve Target of 154 MW unloaded generation plus interruptible and 154 MW of loaded.

B.2.e. Reliability of generating, transmission, and distribution systems.

No data has been submitted.

B.2.f. Interchange purchase and sale prices.

During the 2008 calendar year, non-firm sales totaled 39,815,000 kWh while non-firm purchases totaled 20,630,000 kWh. Prices associated with interchange purchases and sales are considered proprietary information, therefore, will not be provided.

B.2.g. Energy losses.

Actual system energy losses for the 2008 calendar year totaled 1,338,371 MWh.

S:\\Regulatory Submittals\ACC\ACC2008\Historical Data Submittal\Notebook Public Inspection Copy (PIC)\B1-B5 PIC2008.docx

B.3. The level of Cogeneration and other forms of Self Generation in the Utility's service area for the previous calendar year.

In calendar year 2008, there were 7,829 kW of cogeneration and other forms of self-generation in the SRP Service Territory.

B.4. As available, a description and map of the Utility's transmission system, including the Capacity of each segment of the transmission system.

SRP has three voltage levels of transmission: 115kV, 230kV and 500kV.

The purpose of the 115kV system is to transmit hydro generated power to the Phoenix metropolitan area and to deliver power to APS and large SRP mining customers in the Superior - Globe - Winkleman area. Power delivered to APS is for resale to retail customers. A map of the 115kV system is provided as Attachment B.4 #3.

The SRP 230kV system is part of an overall network of SRP, APS and Western 230kV transmission lines that encompasses the Phoenix metropolitan area. The purpose of SRP's 230kV system is to transmit bulk power from Extra High Voltage stations to subtransmission stations around the Phoenix metropolitan area and to transmit power from local generating resources and from the hydro generating resources to the SRP load centers. Extra High Voltage (EHV) systems are typically defined as systems with voltage levels equal to or greater than 345kV. A map of the 230kV system is provided as Attachment B.4 #2.

The purpose of the EHV system, including SRP's 500kV system, is to deliver bulk power generated at remote locations to the SRP load centers in the Phoenix metropolitan area and the 115kV system, provide mutual emergency assistance between neighboring systems when required, allow for sales and purchases of excess power and energy when it is economical or necessary, and wheel power and energy for others. A map of the 500kV system is provided as Attachment B.4 #1 and a map of the eastern mining area system is provided as Attachment B.4 #3.

SRP is a willing participant in several forums wherein SRP shares plans for the 115kV, 230kV, and 500 kV systems with other utilities, providing opportunities to other interested parties to participate in the studies or projects.

SRP is a member of the Southwest Open Access Same-Time Information System (SWOASIS) and has path Available Transfer Capability for commercial paths posted on

B - 8 3/20/2009

the board. This information is readily available to any interested party through connection to the World Wide Web.

The capacity of each segment of the transmission system is provided as Attachment B.4 #4.

B.5. New information requested to supplement previous submittals.

B.5.a. Short-term firm purchases maximum hourly demand (MW) by month for the previous calendar year and short-term firm purchases total energy (MWh) for the previous calendar year.

No data has been submitted.

B.5.b. Unit Performance Data

No data has been submitted.

B.5.c. Forward Looking Maintenance Schedule

No data has been submitted.

B.5.d. Renewable Resource Database

Reference Attachment B.5.d. Attachment B.5.d contains a summary of SRP's existing renewable resources.

B.5.e. Qualifying Facilities

SRP evaluates QF proposals on a case-by-case basis. To provide a general feel for the type of rates SRP might offer a QF, a copy of the standard buyback rate that SRP currently offers its customers is provided as Attachment B.5.e. SRP revises this rate periodically. The Current Buyback Service Rider became effective May 1, 2008. The capacity and energy components in the current rate are based on market prices.

S:\\Regulatory Submittals\ACC\ACC2008\Historical Data Submittal\\Notebook Public Inspection Copy (PIC)\B1-B5 PIC2008.docx

B - 9 3/20/2009

NON-CONFIDENTIAL

ATTACHMENTS

IN-SERVICE DATES

STEAM PLANTS

Kyrene

Unit #1 July 1, 1952 Unit #2 June 15, 1954

Agua Fria

 Unit #1
 January 1, 1958

 Unit #2
 April 1, 1957

 Unit #3
 April 1, 1961

GAS TURBINE PLANTS

Kyrene

 Unit #4
 December 21, 1971

 Unit #5
 July 4, 1973

 Unit #6
 June 23, 1973

 Unit #7
 November 12, 2002

Agua Fria

 Unit #4
 May 1, 1975

 Unit #5
 July 2, 1974

 Unit #6
 July 25, 1974

COMBINED CYCLE PLANT

Santan¹

Unit #1 October 16, 1974
Unit #2 December 31, 1974
Unit #3 October 17, 1974
Unit #4 May 8, 1975
Unit #5 March 31, 2005
Unit #6 March 1, 2006

¹ Plant gas conversion completed on April 16, 1982. First gas burned on April 29, 1982.

Desert Basin

Unit 1 October 16, 2003

HYRDO PLANTS

Roosevelt

Original Unit Commercial 1907

Unit #1 March 22, 1973

Horse Mesa

Unit #1 Original Unit Commercial 1927 Unit #2 Original Unit Commercial 1927 Unit #3 Original Unit Commercial 1927

Unit #1 Converted to 60 Hz
Unit #2 Converted to 60 Hz
April 5, 1972
Unit #3 Converted to 60 Hz
April 11, 1972
Unit #4
June 27, 1972

Mormon Flat

Unit #1 Original Unit Commercial 1926

Unit #1 Converted to 60 Hz
Unit #2
February 27, 1971
June 1, 1971

Stewart Mountain

Unit #1 Original Unit Commercial 1930

Unit #1 Converted to 60 Hz March 1963

Crosscut

Canal Unit 1939

South Consolidated

Canal Unit September 1, 1981

Arizona Falls

Canal Unit November 1, 2003

STEAM PLANTS (PARTICIPATION)

Four	Corners	Pro	iect
I UUI	Comers	110	JUUL

Unit #4 July 1, 1969 Unit #5 July 1, 1970

Mohave Project²

Unit #1 April 1, 1971 Unit #2 October 1, 1971

Navajo Project

 Unit #1
 May 31, 1974

 Unit #2
 April 1, 1975

 Unit #3
 April 30, 1976

<u>Hayden</u>

Unit #2 September 1, 1976³

Coronado Project⁴

Unit #1 December 31, 1979 Unit #2 October 31, 1980

Craig

Unit #1 January 1, 1981⁵
Unit #2 December 31, 1979⁶

² SRP's share increased from 10% to 20% effective October 1, 2001. Mohave Generating Station ceased operations on December 31, 2005, pending installation of new environmental controls and resolution of other operating issues.

³ SRP Entitlement Share decreased from 80% to 50% effective January 1, 1982.

⁴ SRP recaptured 100% of Coronado on January 30, 1986.

⁵ Colorado-Ute considers August 12, 1980, as the date of commercial operation; Platte River Power Authority, September 12, 1980; and Tri-State, December 1, 1980.

⁶ Colorado-Ute and Tri-State consider November 19, 1979, as the date of commercial operation; Platte River Power Authority considers December 12, 1979, as date of commercial operation.

Palo Verde

Unit #1 Unit #2 Unit #3 January 30, 1986 September 20, 1986 January 31, 1988

SRP GENERATING UNIT CHARACTERISTICS (CALENDAR YEAR 2008)

NET CAP (MW)

NET CAP (MW)							
	Summer	Winter	Must Run				
	Julillei	vviitei	Kuli				
Agua Fria 1	113	114	No				
Agua Fria 2	113	114	No				
Agua Fria 3	181 73	184 87	No No				
Agua Fria 4 Agua Fria 5	73 73	82	No No				
Agua Fria 6	73	82	No				
-							
Kyrene 1	34	34	No				
Kyrene 2 Kyrene 4	72 59	72 63	No No				
Kyrene 5	53	62	No No				
Kyrene 6	53	62	No				
Kyrene 7	250	250	No				
Santan 1	92	103	No				
Santan 2	92	103	No				
Santan 3	92	103	No				
Santan 4	92	103	No				
Santan 5	582	626	No				
Santan 6	277	301	No				
Desert Basin	577	600	No				
Roosevelt	36	36	No				
Horse Mesa 1	10	10	No				
Horse Mesa 2	10	10	No				
Horse Mesa 3	10	10	No				
Horse Mesa 4	119	119	No				
Mormon Flat 1	11	11	No				
Mormon Flat 2	57	57	No				
Stewart Mtn	13	0	No				
Crosscut Hydro	3	0	No				
South Con Hydro Arizona Falls	1 0.7	0 0.7	No No				
Alizona i alia	0.7	0.7	110				
Coronado 1	389	389	Yes				
Coronado 2	384	384	Yes				
Craig 1	124	124	Yes				
Craig 2	124	124	Yes				
Favo October 4	75	75	V				
Four Corners 4 Four Corners 5	75 75	75 75	Yes Yes				
roul comers 3	73	75	103				
Hayden 2	131	131	Yes				
Mohave 1	0	0	No				
Mohave 2	0	0	No				
Navajo 1	163	163	Yes				
Navajo 2	163	163	Yes				
Navajo 3	163	163	Yes				
Palo Verde 1	229	233	Yes				
Palo Verde 2	229	233	Yes				
Palo Verde 3	214	216	Yes				
Fuel Cells	0.25	0.25	No				
Photo Voltaics	0.8	8.0	No				
Tri-Cities 1	8.0	0.8	No				
Tri-Cities 2	0.8	0.8	No				
Tri-Cities 3	0.8	0.8	No				
Tri-Cities 4	0.8	0.8	No No				
Tri-Cities 5	0.8	0.8	No				

SRP GENERATING UNIT CHARACTERISTICS

(Calendar Year 2008)

Fuel Costs (\$/MM8TU)

UNIT	GAS	OIL	COAL	NUCLEAR
AGUA FRIA #1	\$9.82 1/	N/A	N/A	N/A
AGUA FRIA #2	\$9.71 1/	N/A	N/A	N/A
AGUA FRIA #3	\$8.86 1/	N/A	N/A	N/A
AGUA FRIA #4	\$9.38 1/	N/A	N/A	N/A
AGUA FRIA #5	\$9.25 1/	N/A	N/A	N/A
AGUA FRIA #6	\$9.35 1/	N/A	N/A	N/A
KYRENE #1	N/A	N/A	N/A	N/A
KYRENE #2	N/A	N/A	N/A	N/A
KYRENE #4	\$7.99 1/	N/A	N/A	N/A
KYRENE #5	\$9.33 1/	N/A	N/A	N/A
KYRENE #6	\$8.45 1/	N/A	N/A	N/A
KYRENE #7	\$8.32 1/	N/A	N/A	N/A
SANTAN #1	\$8.22 1/	N/A	N/A	N/A
SANTAN #2	\$8.08 1/	N/A	N/A	N/A
SANTAN #3	\$8.24 1/	N/A	N/A	N/A
SANTAN #4	\$8.34 1/	N/A	N/A	N/A
SANTAN #5	\$7.79 1/	N/A	N/A	N/A
SANTAN #6	\$7.98 1/	N/A	N/A	N/A
DESERT BASIN 1 & 2	\$8.43 1/	N/A	N/A	N/A
ROOSEVELT	N/A	N/A	N/A	N/A
HORSE MESA 1	N/A	N/A	N/A	N/A
HORSE MESA 2	N/A	N/A	N/A	N/A
HORSE MESA 3	N/A	N/A	N/A	N/A
HORSE MESA 4	N/A	N/A	N/A	N/A
MORMON FLAT 1	N/A	N/A	N/A	N/A
MORMON FLAT 2	N/A	N/A	N/A	N/A
STEWART MOUNTAIN	N/A	N/A	N/A	N/A
CROSSCUT HYDRO	N/A	N/A	N/A	N/A
SOUTH CON HYDRO	N/A	N/A	N/A	N/A
CRAIG 1	\$7.82	N/A	\$1.53	N/A
CRAIG 2	\$7.82	N/A	\$1.53	N/A
CORONADO 1	N/A	\$7.12	\$1.76	N/A
CORONADO 2	N/A	\$7.12	\$1.76	N/A
FOUR CORNERS 4 2/	N/A	N/A	N/A	N/A
FOUR CORNERS 5 2/	N/A	N/A	N/A	N/A
HAYDEN 2	N/A	\$28.25	\$1.61	N/A
MOHAVE 1	N/A	N/A	N/A	N/A
MOHAVE 2	N/A	N/A	N/A	N/A
NAVAJO 1	N/A	\$20.84	\$1.67	N/A
NAVAJO 2	N/A	\$20.84	\$1.67	N/A
NAVAIO 3	N/A	\$20.84	\$1.67	N/A
PALO VERDE 1 2/	N/A	N/A	N/A	N/A
PALO VERDE 2 2/	N/A	N/A	N/A	N/A
PALO VERDE 3 2/	N/A	N/A	N/A	N/A

^{1/} Gas prices do not include fixed transportation costs of \$40,000,183 during Calendar Year 2008.

^{2/} APS will report figures for Four Corners and Palo Verde.

^{3/} Oil burned at Agua Fria was insignificant.

Unit Fuel Types

Generating Unit	Fuel
Agua Fria 1-3	Natural Gas or Diesel (2)
Agua Fria 4-6	Natural Gas or Diesel (2)
Kyrene 1-2	Natural Gas or Diesel (2)
Kyrene 4-7	Natural Gas or Diesel (2)
Santan 1-6	Natural Gas
Desert Basin	Natural Gas
Four Corners 4, 5	Coal
Navajo 1-3	Coal
Hayden 2	Coal
Craig 1,2	Coal
Coronado 1,2	Coal
Palo Verde 1-3	Nuclear
Roosevelt	Hydro
Horse Mesa 1-4	Hydro
Mormon Flat 1-2	Hydro
Stewart Mountain	Hydro
Cross Cut	Hydro
South Consolidated	Hydro
Arizona Falls	Hydro

SRP GENERATING UNIT MAINTENANCE SCHEDULE (CALENDAR YEAR 2008)

See Attachment 8.5.b, Unit Performance Data for the following units: 2008 planned outages (PO entries on schedule):

Agua Fria
Kyrene
Santan
Roosevelt
Horse Mesa
Mormon Flat
Stewart Mtn
Coronado
Navajo
Participation Plants

Start Date

End Date

Craig 1	April 11, 2008	April 28,2008
Craig 2		
Four Corners 4		
Four Corners 5	February 19, 2008	May 20, 2008
Hayden 2	April 4, 2008	May 12,2008
Mohave 1	January 1, 2008	December 31, 2008
Mohave 2	January 1, 2008	December 31, 2008
Palo Verde 1	October 4, 2008	November 19, 2008
Palo Verde 2	March 29, 2008	May 19, 2008
Palo Verde 3	January 1, 2008	January 19, 2008

۷	
4	
Ç	
Š,	
y	
4	
ı	
3	
ĕ	
-	
١,	
֓֞֝֝֟֝֝֟֝֟֝֝֟֝֟֝֓֓֓֓֓֓֓֓֓֓֓֟	
ž	
5	
ĭ	
ᢊ	
‡	
3	
-	
5	
ĕ	

ENDING STOCK	138,218 *9948 bbls transferred to CO 6177	13,401-O *9948 received from AF 141 384,585-C				O-0609		20,637-O 848,235-C	
MMBTU PER	5.7.8	5.87						5.77	
OIL BBL CONSUMED	000004044	2,159 1,053 3,212			0 0	0000	:	16 1066 1257 2339	
CONSUMED PS-WAT				292			0		
COAL TONS CONSUMED		143,966 148,955 292,921						244909 239586 222972 707,467	
GAS MCF MMBTU PER COAL TONS CONSUMED OIL BBL CONSUMED	1.022	17.7	1.025			1.021		21.6	1.027
GAS MCF 1	96 10,813 49,977 60,886 0 3,274 0 3,274 64,160		541,350 428,308 969,658 37,679 1,007,337		0 0	0 3,556 3,190 6,746 572,797 6,275 885,818			32 14,297 82,447 59,240 156,016 152,150 78,024 74,126 152,150 58,159 939,377 1,036,682 1,976,059 883,035 2,859,094 2,128,209 941,194 3,225,419
NET	(124) 376 3,821 4,073 (37) (37) 75 4,148	236,913 246,062 482,975	46,355 37,295 83,650 52,085	545 3,728	0 (67)	(82) 215 195 328 49,957 26,331	(10)	537,459 516,119 488,389 1,541,967	(204) 1,094 8,378 6,088 115,356 116,943 49,104 89,761 95,010 184,771 83,390 268,161 301,714
GRS GENERATION	817 4,656 5,473 0 174 0 174 5,647	265,859 274,472 540,331	48,320 39,447 87,767 52,085	608 4,305	00	0 246 224 470 50,201 26,496	0	578,391 555,939 524,375 1,658,705	1,377 8,990 6,566 16,933 119,249 119,249 51,026 89,761 98,579 188,340 84,476 272,816 397,589
Jan 2008	AF1 AF2 AF3 AFSTM AF4 AF5 AF6 AF6 AF6 AF6 AF6 AF7	CO CO CO	DB GT1 DB GT2 DB GT DB GT DB STM DB STM	HM123 HM4	KY1 KY2	KY4 KY5 KY5 KY6 KY6 KY GT KY7 GT KY7 STM	MF1 MF2	NA1 NA2 NA3	ST1 ST2 ST3 ST3 ST4 CS ST4 CS ST5 ST4 CS ST5 DB ST5 DB ST5 DB ST5 DB ST5 DB ST5 CT ST6 CT ST6 CT ST7

ENDING STOCK	138,218	13,518-O *64 bbls used oil 430,147-C			Q-0809	22,546.O 820,940-C	
MMBTU PER		5.87				5.77	
OIL BBL N	٥	749 198 947			⇔	4029 1678 27 5734	\rightarrow
CONSUMED PS-WAT				10,583		8	
COAL TONS		142,724 157,603 300,327				17397 205677 235740 458814	
MMBTU PER	1.017	17.9	1.025		1.019	21.65	1.025
GAS MCF CONSUMED	11,720 21 0 11,741 1,759 0 2,349 4,108 15,849		465,495 415,421 880,916 15,850 8,142 7,707 896,766		0 0 0 1,235 0 1,235 627,794 3,169 632,198		0 1,463 2,293 3,169 6,925 63,441 29,910 33,441 24,811 644,020 815,802 1,459,822 728,488 2,188,310 1,523,263 753,299 753,299
NET	658 (136) (266) 256 68 68 (33) (128 163 419	237,457 264,375 501,832	42,241 36,839 79,080 47,278 126,358	430 (4, <i>677</i>)	0 (70) (70) (3) (3) (32) (65) (65) 84,539 84,403	5 84 32,063 460,113 514,793 1,006,969	(276) (168) (111) (93) (648) 79,264 61,579 74,793 136,372 68,702 205,074 215,536 107,476
& GENERATION	1,058 0 0 1,058 102 0 161 263 1,321	266,168 294,292 560,460	43,920 39,045 82,965 47,278 130,243	487 6,293	0 0 67 67 67 88,191 28,285 86,446 86,513	13 200 39,333 494,783 551,741 1,085,857	0 119 191 232 542 81,628 11,579 77,690 119,269 70,265 70,265 209,534 220,534 220,534 220,534 331,713
Feb 2008	AF1 AF2 AF3 AF3 AF4 AF4 AF6 AF6 AF6 AF6 AF7 AF6 AF7 AF7	00 00 00 00 00	DB GT1 DB GT2 DB GT DB STM DB DB1 DB DB1 DB DB2 DB PLT	HM123 HM4	KY1 KY2 KY3 KY4 KY4 KY5 KY4 KY5 KY6 KY GT KY7 GT KY7 ST KY7 ST KY7 ST	MF1 MF2 NA1 NA3 NA	ST1 ST3 ST3 ST3 ST3 ST4 CS CS ST5 STM ST5 SDB ST5 STM ST5 SDB ST5 STM ST5 STD ST7

ENDING	138,218	11,457-0 390,852-C			0,030		22,406-O 811,270-C	
MMBTU PER		5.87					5.75	
OIL BBL CONSUMED	0	55 1100 1155			О		501	٥
CONSUMED PS-WAT				4,569		2,360		
COAL TONS CONSUMED		166,671 163,358 330,029					763,271	
MMBTU PER	1.018	17.7	1.026		1.022		21.65	1.027
GAS MCF CONSUMED	0 3,905 111 4,016 1,364 0 642 2,006 6,022		111,790 167,308 279,098 3,580 1,263 2,316 282,678		0 0 0 823 913 1,736 330,043 747 330,790			0 0 0 0 7,942 78,785 39,796 38,989 78,785 17,455 17,455 17,455 17,657,068 626,060 2,283,128 1,735,853 643,513 1,735,853 643,513
NET	(195) (116) (198) (509) 55 (38) (11) (11) (503)	285,475 275,176 560,651	9,595 14,013 23,608 13,984 37,592	1,542 (1,687)	0 (73) (73) (54) 27 27 27 28,322 13,652 41,974 41,901	226 (258) 536,666	542,446 545,056 1,624,168	(288) (288) (214 (288) (350) 91,134 31,774 74,993 79,092 154,085 56,914 210,999 245,219 88,688
GRS GENERATION	279 0 0 279 77 72 27 27 378 41	317,773 306,329 624,102	10,322 15,006 25,328 13,984 39,312	1,606 3,302	0 0 0 0 60 58 118 29,125 14,187 43,310	234 2,279 575,609	583,074 583,022 1,741,705	850 850 850 95,003 33,682 74,993 81,174 156,167 57,886 214,033 2214,033 2214,033 2343,588
Мат 2008	AF1 AF2 AF3 AF3TM AF4 AF4 AF5 AF6 AF6 AF6 AFGT AF	00 S C C C C C C C C C C C C C C C C C C	DB GT1 DB GT2 DB GT2 DB GT DB STM DB DB DB1 DB DB2 DB PLT	HM123 HM4	KY1 KY2 KY STM KY4 KY5 KY6 KY GT KY7 GT KY7 STM KY7	MF1 MF2 NA1	NA2 NA3	ST1 ST3 ST3 ST3 ST3 ST3 ST5 DB1 ST5 DB2 ST5 GT1 ST5 GT1 ST5 GT1 ST5 GT2 ST5 GT2 ST5 GT2 ST5 GT2 ST5 GT2 ST5 GT3 ST5 GT3 ST6 ST7 ST7 GT3 ST7 GT

ENDING	138,212	10,752-O 445,160-C		6,030		
MMBTU PER	5.75	5.87			22,291-O 794,981-C	
	0 n - 0 v v	969		•	5.75	e
CONSUMED OIL BEL PS-WAT CONSUMED				6,765	3,685	
COAL TONS		164,075 163,080 327,155			716593.00	
MMBTU PER	1.018	17.84	1.024	1.018	21.64	0,000
GAS MCF CONSUMED	0 0 17,630 17,630 627 9,372 16,595 26,594 44,224		503,071 502,136 1,005,207 39,205 19,771 19,434 1,044,412	0 0 1,626 1,282 0 2,908 833,190 5,967 862,065		60,029 75,868 76,342 124,331 336,570 0 0 51,191 0 993,972 993,972 993,972 993,972
NET	(199) (204) 1,244 841 50 591 1,141 1,782 2,623 32	275,082 276,884 551,966	42,269 44,806 87,075 51,899 138,974 3,362	5,565 6,765 0 (73) (73) (73) (73) (73) (73) (73) (74) (73) (74) (74) (75) (75) (75) (75) (75) (75) (75) (75	993 4,784 533,781 533,961 464,631 1,552,373	6,032 8,332 8,330 13,859 36,613 (24) (24) (19) (19) (192) 93,863 93,671 (192) 93,671 (192) 149,242 185,419
3RS GENERATION	0 1,793 1,793 66 628 1,178 1,872 3,665	305,683 307,925 613,608	44,186 47,095 91,281 51,899 143,180 3,423	16,186 0 0 0 102 93 0 195 78,108 38,898 117,006	1,003 8,647 572,708 573,045 500,197 1,645,950	6,401 8,773 8,838 14,508 38,520 93 6 86 86 95,124 179 1173 1191,437
Арт 2008	AF1 AF3 AF3 AF4 AF4 AF5 AF6 AF6 AF6 AF7	8 8 8	DB GT1 DB GT2 DB GT2 DB STM DB STM DB DB1 DB DB2 DB PLT HM123	HM4 KY1 KY2 KY2 KY2 KY3 KY3 KY3 KY3 KY3	MF1 MF2 NA1 NA3 NA	ST1 ST2 ST3 ST3 ST3 ST3 ST3 ST3 ST3 ST3 ST3 ST3

Atta										
	R ENDING STOCK		138,212	5,998-O *19bbls sounding revision 456,505-C				6,030	20,870-O 5 794474-C	
	MMBTU PER			5.87					5.75	
	MM									
	OIL BBL CONSUMED		0	4.773				0	1421	
Plant Report	CONSUMED PS-WAT					14,108			7,417	•
Monthly Power Plant Report	COAL TONS			122,807 147,527 270,334					733,826	
	MMBTU PER	1.016	1.015	17.8	1.026			1.025	21.6	
	GAS MCF CONSUMED	51,191 43,460 107,625 202,276 10,260 9,049	31,173 233,449		591,955 385,668 977,623 18,580 15,613 2,966 996,203		0 0 0 0 2,507 3,612 6,119	565,863 3,745 569,608 575,727		82,799 58,017 79,694 92,763 313,273 59,967 19,925 40,043 59,968
	NET	4,316 3,557 9,962 17,835 717 622	2,175 20,010 39	206,688 247,680 454,368	53,378 34,101 87,479 51,936 139,415	2,260 4,450	0 (66) (61) 156 246 341	52,327 25,425 77,752 78,027 881	2,045 542,004 541,164 499,774 1,582,942	8,968 6,142 8,674 10,599 34,383 58,804
	GRS GENERATION	5,035 4,239 10,959 20,233 755 660	2,291 22,524 22,524 39	231,388 276,622 508,010	55,706 35,919 91,625 51,936 143,561	2,345 18,741	0 0 0 186 274 460	53,490 26,204 79,694 80,154 890	9,617 584,683 579,381 533,936 1,698,000	9,400 6,542 9,131 11,143 36,216 61,619 44,733
	May 2008	AF1 AF2 AF3 AF3 AFSTM AF4 AF5	AFGT AF SV3	CO1 CO2 CO	DB GT1 DB GT2 DB GT DB STM DB STM DB DB1 DB DB2 DB PLT	HM123 HM4	KY1 KY2 KY STM KY4 KY5 KY5 KY6	KY7 GT KY7 STM KY7 KY PLT	MF2 NA1 NA3 NA	ST1 ST2 ST3 ST4 CS ST5 STM ST5 DB1 ST5 DB2 ST5 DB2 ST5 DB

							1.028
316,083	757,775	1,073,858	758,118	1,831,976	1,133,826	798,355	2,245,454
29,035	929,89	97,711	71,215	168,926	156,515.	114,615	305,513
29,035	70,922	756'66	72,914	172,871	161,576	117,647	315,439
STS GT1	STS GT2	STS GT	ST6 GT	ರ	STS	ST6	ST PLT

Monthly Power Plant Report

ENDING	138.212	4,374-O 427,266-C	6,030	22,760-O 786,802-C	
MMBTU PER		5.87		5.87	
BBL	•	436 1188 1624	0	1014 975 1104 3093	
OIL BBL CONSUMED					
CONSUMED PS-WAT			17,618	9,615	
COAL TONS		155,571 160,516 316,087		215273 249384 241315 705972	
MMBTU PER	1.019	17.5	1.032	21.6	ر مر
GAS MCF CONSUMED	74,704 66,246 165,422 306,372 15,353 9,459 14,429 39,241 345,613	574,552 529,939 1,104,491 69,191 34,268 34,923 1,173,682	0 0 0 2,458 4,082 2,112 8,652 607,036 6,511 613,547		122,657 109,401 131,773 138,184 502,015 124,664 60,213 64,451 124,664 54,160
NET	6,456 5,566 15,485 27,507 1,009 602 919 2,530 30,037 39	263,361 272,918 536,279 49,855 47,112 96,967 64,401	3,503 (414) (1) (78) (79) 100 262 133 495 53,659 27,303 80,962 81,378	1,257 (151) 462,527 523,477 520,477 1,506,481	13,329 12,232 14,597 15,484 55,642 93,486 43,804
GRS GENERATION	7,271 6,426 16,596 30,393 1,050 644 961 2,655 33,048	294,926 304,222 599,148 52,236 49,251 101,487 64,401	3,593 17,292 0 0 146 289 157 592 54,881 28,122 83,003 83,595	1,265 9,607 499,860 561,760 587,584 1,619,204	13,831 12,724 15,178 16,126 57,839 95,784 45,449
Jun 2008	AF1 AF2 AF3 AFSTM AF4 AF5 AF6 AF6 AF6 AF6 AF6 AF7	CO1 CO2 CO CO DB GT1 DB GT2 DB STM DB DB1 DB DB2 DB PL1	HM123 HM4 KY1 KY2 KY2 KY5 KY4 KY5 KY6 KY6 KY6 KY7 KY7 KY7 KY7 KY7	MF1 MF2 NA1 NA2 NA3	ST1 ST2 ST3 ST3 ST4 CS ST5 STM ST5 DB1 ST5 DB2 ST5 DB ST5 DB

STS GT1 STS GT2 STS GT CT STS STS ST6 STR

	ENDING	138,212	3,743-O 370,314-C		6,030	21,885-O 713,866-C
	MMBTU PER		5.87			5.78
	OIL BBL CONSUMED	٥	9 622 631		٥	1,259 1,741 9 3,009
	CONSUMED PS-WAT			11,999	6,101	
Plant Report	COAL TONS		166,207 167,230 333,437			233,312 232,377 252,326 718,015
Monthly Power Plant Report	MMBTU PER	1.020	7.71	1.034	1.030	21.8
	GAS MCF CONSUMED	77,701 74,926 163,064 315,691 8,791 6,823 6,899 22,513	017 103	587,678 607,101 1,194,779 71,048 34,570 36,378 1,265,827	0 0 132 0 0 132 683,793 10,790 694,583	134,920 127,380 145,795 161,107 569,202 120,261 61,280 58,980 120,260 120,260 55,547
	NET	6,030 5,579 14,201 25,810 513 423 373 1,309 27,119 35	279,317 283,978 563,295	50,978 53,516 104,494 69,562 174,056 3,092 6,231	(85) (85) (84) (48) (22) (11) (60,960 30,779 91,739 91,573	506,811 496,221 550,381 1,553,413 14,078 16,156 18,279 63,216 97,126
	GRS GENERATION	7,276 6,800 15,908 29,984 554 466 416 1,436 31,420	312,484 316,740 629,224	53,342 55,989 109,331 69,562 178,893 3,191 18,395	0 0 0 1 1 62,327 31,693 94,020 94,021	546,058 534,572 589,423 1,670,053 15,254 14,672 16,786 18,981 65,693 99,411
	Jul 2008	AF1 AF2 AF3 AF8TM AF4 AF5 AF6 AF6 AFGT AFGTS	CO CO E	DB GT1 DB GT2 DB GT DB STM DB DB1 DB DB2 DB PLT HM123 HM4	KY1 KY2 KYSTM KY4 KY4 KY5 KY6 KY6 KY7GT KY7GT KY7GT KY7GT KY7GT KY7GT MF1	NAI NA2 NA3 NA3 NA ST1 ST2 ST3 ST3 ST3 ST3 ST3 ST3 ST3 ST3 ST4 CS ST5 STM ST5 DB2 ST5 DB2 ST5 DB2 ST6 STM

Attachment: B.1.p.

1.035

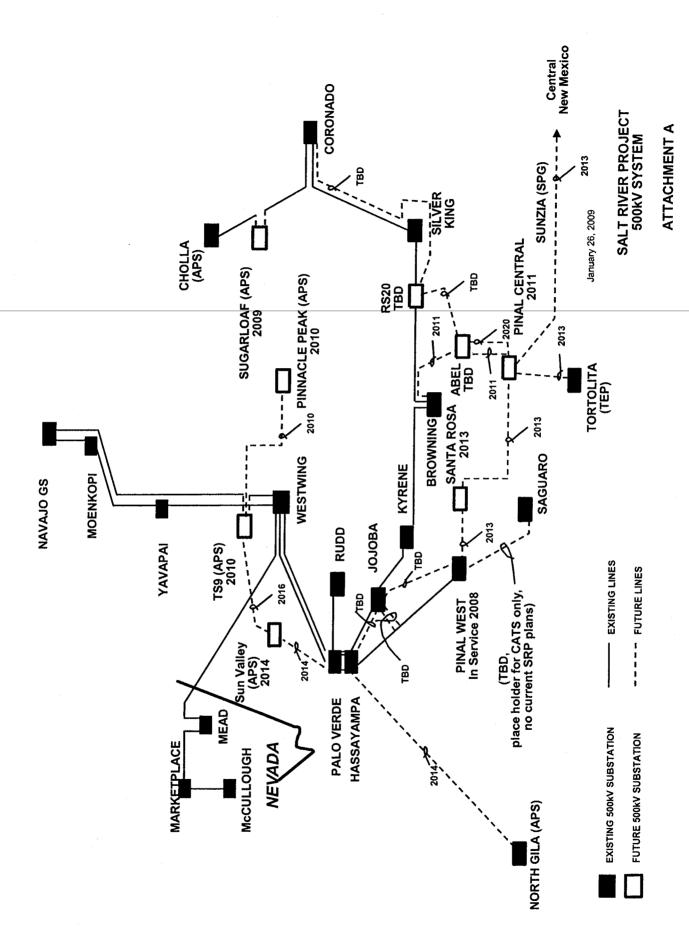
69,211 77,429 146,640 83,162 229,802 246,051 137,861 449,605

STS GT1
STS GT2
STS GT
ST6 GT
CT
ST5
ST5
ST5
ST7
ST6
ST7
ST PLT

ENDING	135,715 *2497 bols transferred to CGS(6177)	4,935-O *2497 bbls transferred from AFS(141) 330,159-C				6.030	0000	21,174-0 644,182-C	
MMBTU PER		5.87						5.87	
OL BBL	. •	3 1302 1305					•	675 36 0 7111	•
CONSUMED PS-WAT				8,410			3,970		
COAL TONS CONSUMED		167,791 164,481 332,272						234,773 257,312 253,787 745,872	
MABTU PER	1.018	17.7	1.034			1.036		21.8	1.035
GAS MCF CONSUMED	88,872 75,772 210,048 374,692 9,860 6,599 8,589 25,048 399,740		580,798 548,742 1,129,540 65,158 37,272 27,886 1,194,698		0 0 0 1,923	328 3,049 595,534 14,038 609,572	12,021		147,324 121,566 130,433 170,441 589,764 136,443 116,443 116,443 116,443 116,643 11,566,540 178,164 178,164 178,164 178,166,540 1755,451 12,322,000 17,000 17,000 1
NET	7,187 6,052 18,892 32,131 610 371 516 1,497 33,628 34	278,981 283,454 562,435	50,586 48,172 98,758 65,587 164,345	2,504 10,891	0 (85) (85) 67	15 106 53,424 26,855 80,279	885 5,883	508,785 551,475 553,855 1,614,115	15,898 113,316 16,642 19,113 64,969 98,847 45,349 77,698 77,598 77,598 143,978 68,819 212,797 242,225 114,168
GRS GENERATION	8,415 7,168 20,740 36,323 4,11 556 1,618 37,941 34	312,200 316,338 628,538	52,695 50,860 103,555 65,587 169,142	2,592 19,540	0 0 0 115	22 22 171 54,707 27,708 82,415	893 893 9999	547,115 593,027 592,753 1,732,895	16,512 13,889 17,273 19,856 67,530 101,410 47,259 73,726 74,120 147,846 17,196 218,042 249,256 117,455 117,455
Aug 2008	AF1 AF2 AF3 AFSTM AF4 AF6 AF6 AFGT AFGT	00 CO 00 CO	DB GT1 DB GT2 DB GT DB STM DB DB1 DB DB2 DB DB2	HM123 HM4	KY1 KY2 KY STM KY4	KY6 KY GT KY GT KY 7 STM KY 7 STM	MF1	NA! NA2 NA3 NA	ST1 ST3 ST3 ST3 ST3 ST5 ST5 DB1 ST5 DB1 ST5 DB2 ST5 DB2 ST5 DB1 ST5 GT1 ST5 GT1 ST5 GT2 ST5 GT1 ST5 GT2 ST5 GT1 ST5 GT2 ST5 GT2 ST5 GT3 ST5 GT

ENDING	132,296	7,652-0 334,509-C		9,030	20,755-O 648,329-C	
MMBTU PER	5.87	5.87			5.87	
# 0	000087888	9 6 9		0	58 310 51 419	
NSUMED OIL BEL PS-WAT CONSUMED		369 369 465			, m . 4	
CONSUMED PS-WAT			9	7.66	4,558	
COAL TONS CONSUMED		160,037 156,508 316,545			245,278 232,142 242,548 719,968	
MMBTU PER	1,020	17.7	1.036	1.030	21.8	
GAS MCF CONSUMED	45,938 19,515 164,698 230,151 9,304 7,935 8,409 25,648 255,799	583 391	263,729 1,236,120 95,170 47,284 47,886 1,331,290	0 0 2,568 2,246 3,758 8,572 622,909 8,854 631,763	640,335	142,329 133,838 151,472 161,657 589,296 131,144 67,644 63,499 131,143 55,275
NET	3,211 813 14,354 18,378 617 516 549 1,682 20,060	269,192 273,955 543,147 51,116	21,110 57,897 109,013 74,974 183,987 2,386	7,367 (70) (70) (70) 80 109 246 435 56,065 28,202 84,267	84,632 886 5,115 534,614 497,304 533,314 1,565,232	15,573 15,038 16,767 18,197 65,575 89,966 40,905
3RS GENERATION	4,158 1,623 16,045 21,826 655 555 588 1,798 1,798 32	300,617 305,618 606,235 53,240	23,240 60,634 113,874 74,974 188,848 2,452	1,530 0 0 130 136 268 534 57,347 57,347 86,404	86,938 894 9,807 573,833 536,126 570,338 1,680,317	16,155 15,583 17,416 18,886 68,040 92,386 42,519
Sep 2008	AF1 AF2 AF3 AF3 AF4 AF4 AF5 AF6 AF6 AF6 AF7 AF7 AF7 AF7 AF7	CO C	DB GTZ DB GTZ DB STM DB DB I DB DB I DB DB I DB PLT HM123	KY! KY2 KY2 KY2 KY4 KY4 KY5 KY5 KY6 KY76 KY76 KY76 KY76 KY76 KY77 KY7	KY PLT MF1 MF2 NA1 NA2 NA3	STI ST2 ST3 ST3 ST4 CS ST5 STM ST5 DB1 ST5 DB2 ST5 DB

							1.038
698,555	717,568	1,416,123	664,258	2,080,381	1,547,266	719,533	2,856,095
64,776	63,272	128,048	60,112	188,160	218,014	101,017	384,606
64,777	66,847	131,624	61,715	193,339	224,010	104,234	396,284
STS GT1	STS GT2	STS GT	ST6 GT	C	STS	ST6	ST PLT

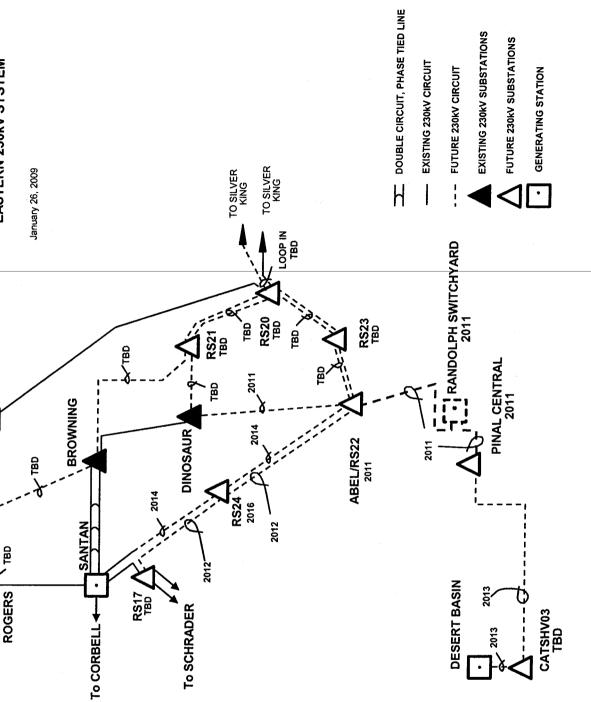

ENDING	132,296	11,103-O 328,305-C	980)	19,703-O 618,491-C
MAMBTU PER		8.9		5.77
CONSUMED OIL BEL PS-WAT CONSUMED	0	167 851 1018	•	3008 839 62 151 1052
COAL TONS CONSUMED		154,976 142,765 297,741		223,782 255,727 247,196 723,705
MAMBTU PER	1.020	17.8	1.036	21.7
GAS MCF CONSUMED	6,385 24,237 124,069 134,691 7,248 4,975 7,077 19,300 173,991	286,671 62,199 348,870 14,404 10,806 3,598	363,274 0 0 2,298 11 2,379 608,695 608,695	162,080 163,998 154,039 160,497 640,614 116,258 53,988 62,270
NET	315 1,473 10,429 12,217 482 301 459 1,242 13,459	258,409 248,750 507,159 24,874 4,678 29,552 18,758	48,310 (54) (18) (18) (72) 0 (58) (58) (58) (23) 23,925 26,697 80,682 80,587	249 (1,675) 490,289 542,979 552,029 1,585,297 17,276 17,276 17,276 17,705 16,709 17,564 69,254 93,879
GRS GENERATION	575 2,143 11,964 14,682 519 341 499 1,359 16,041	289,374 278,275 567,649 25,965 5,629 31,594 18,758	50,352 0 0 0 0 0 138 138 27,553 27,553 82,756 82,896	257 1,600 517,357 584,797 590,864 1,693,018 17,868 18,338 17,304 18,235 71,790 96,456
Oct 2008	AF1 AF2 AF3 AF8TM AF4 AF5 AF6 AFGT SV3	COI CO2 CO CO DB GT1 DB GT2 DB GT4 DB GT4 DB DB1	DB PLT HM123 HM4 HM KY1 KY2 KY2 KY2 KY3 KY4 KY5 KY5 KY5 KY6 KY7 KY7 KY7 KY7 KY7 KY7 KY7	MF1 MF2 NA1 NA2 NA3 NA3 NA5 ST1 ST1 ST2 ST3

								1.036
52,015	627,077	952,929	1,580,006	906,246	2,486,252	1,696,264	958,261	3,295,139
53,790	57,879	85,063	142,942	85,170	228,112	236,821	138,960	445,035
55,357	57,879	88,325	146,204	86,846	233,050	242,660	142,203	456,653
ST6 STM	STS GT1	STS GT2	STS GT	ST6 GT	CI	STS	ST6	ST PLT

Nov 2008

ENDING STOCK	132,293	9,705-O *87 bbls used oil converted 353,692-C	6,030	36,156-0 642,192-C	
OIL BBL MMBTU PER CONSUMED	5.87	5.87		5.78	
BBL MED M	m	769 716 1,485	•	153 2,194 1,504 3,851	
OIL					
Pump MWH			•	2,799	
Consumed Coal Pump MWH		153,409 140,648 294,057		211,656 195,373 172,370 579,399	
MMBTU PER	1.013	17.9	1.017	21.6	1.032
GasBilledMCF	5,619	691,745 11,833 7,838 3,996 703,578	368,107		149,577 61,936 30,587 2,422,830 2,664,930
Net Gen	56 (258) 1,427 (109) 23 1,116	258,009 249,247 507,256 59,081 36,223	(45) (15) (15) (50) (134) 32,124 16,122 48,062	196 (1,208) 455,546 410,536 378,566 1,244,648	15,064 87,189 46,956 226,401 375,610
GRS Gen	481 - 2,089 23 2,570	288,498 278,445 566,943 62,490 36,223	33,026 16,720 49,746	203 1,816 502,029 446,730 410,571 1,359,330	16,693 89,602 48,514 230,972 385,781
	AF1 AF2 AF3 AFGT AFSV AF	CO1 CO2 CO DB GT (CT) DB DB 1 DB DB 1 DB DB 1	HM 123 HM 4 KY 1 KY 2 KY 2 KY GT KY 7GT (CT) KY 7 STM (CA)	MF1 MF2 NA1 NA2 NA3	ST1-4 (CS) ST5 STM ST5 DB1 (CA5A) ST5 DB2 (CA5B) ST6 STM (CA6A) ST56 GT (CT) ST PLT

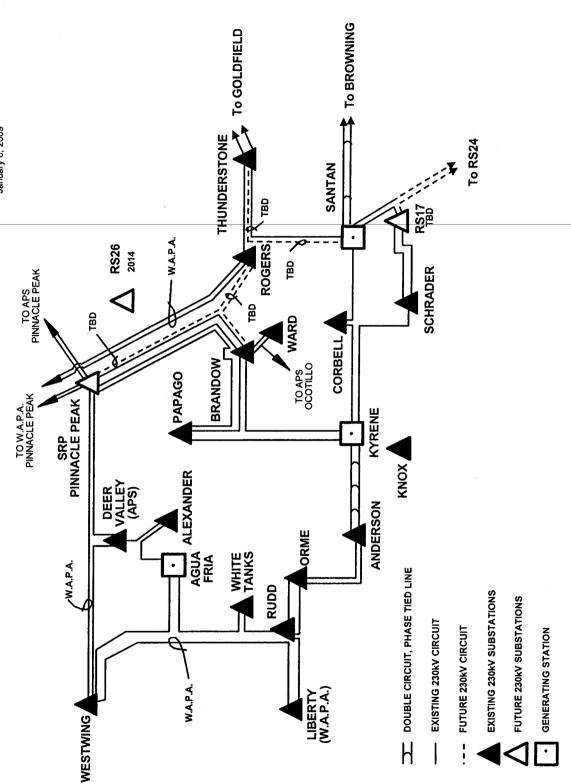
ENDING	132,293	7,928-0 384,992-C			6,030	31567-O 706,260-C	
MMBTU PER		5.87				5.87	
OIL BBL	•	54 1,722 1,776				44 1,778 2,767 4,589	
Pump MWH (16,160	8,142		
Consumed		165,772 132,480 298,252				219,837 179,431 149,923 549,191	
GasBilled MMBTU/ MCF PER	1.027	17.9	1.034		1.028	21.6	1.035412
GasBilled	8,678 8,635 8,635		918,658 28,728 24,493 4,235 947,386		2,452 714,684 8,782 725,918		255,985 159,677 53,739 3,026,450 3,495,851
Net Gen	(178) 512 463 (104) 92 693	279,310 235,804 515,114	81,023 50,964 131,987	1,019 (5,070)	- (46) 19 66,700 32,194 98,867 514 (1,811)	468,458 377,568 319,168 1,165,194	27,355 126,586 50,982 291,121 496,044
GRS Gen	- 794 761 1,555	312,318 263,439 575,757	85,163 50,964 136,127	1,091	- 170 67,995 33,057 101,222 522 6,489	507,768 410,379 348,238 1,266,385	28,777 129,875 52,463 295,853 506,968
Dec 2008	AF1 AF2 AF3 AFGT AFSV AF	CO1 CO2 CO	DB GT (CT) DB STM (CA) DB DB1 DB DB2 DB PLT	HM 123 HM 4	KY 1 KY 2 KY GT KY 7 GT (CT) KY7 STM (CA) KY PLNT MF1	NA1 NA2 NA3 NA	ST1-4 (CS) ST5 STM ST5 DB1 (CA5A) ST5 DB2 (CA5B) ST6 STM (CA6A) ST56 GT (CT) ST PLT

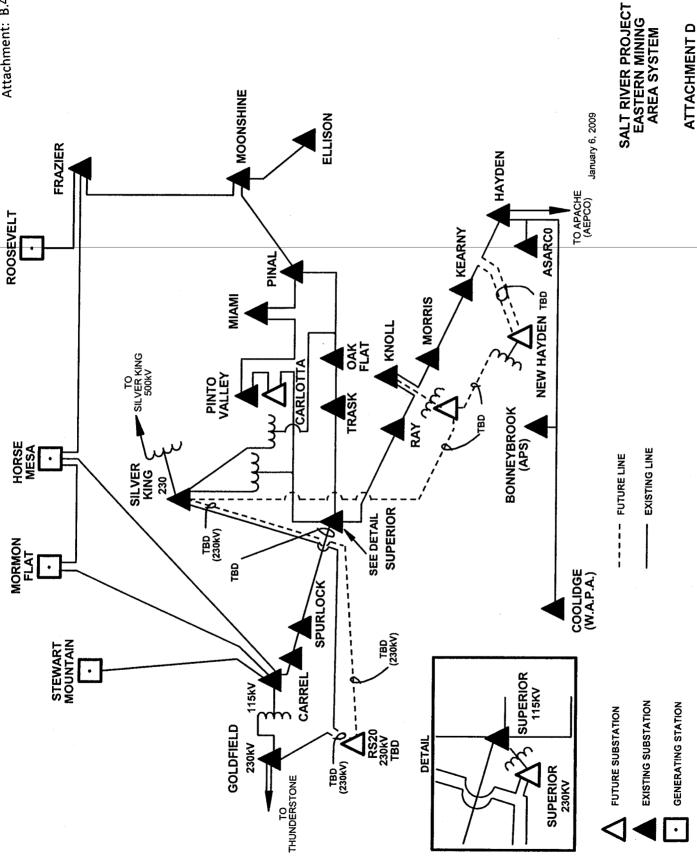

ATTACHMENT B

GOLDFIELD

THUNDERSTONE

PINNACLE PEAK


SALT RIVER PROJECT EASTERN 230KV SYSTEM



ATTACHMENT C

SALT RIVER PROJECT WESTERN 230kV SYSTEM

January 6, 2009

Capacity of SRP Transmission Lines - 2009

Level	Transmission Line	Capacity (MVA)
115	Coolidge/Bonneybrook	119.5
	Bonneybrook/Hayden	119.5
	Ellison/Moonshine	119.5
	Frazier/Horse Mesa	159.4
	Frazier/Moonshine	159.4
	Frazier/Roosevelt	39.8
	Goldfield/Horse Mesa	181.3
	Goldfield/Mormon Flat	161.3
	Goldfield/Carrel/Spurlock	161.3
	Goldfield/Stewart Mountain	161.3
	Hayden/Kearney Tap/Morris	119.5
	Hayden/Asarco	119.5
	Horse Mesa/Mormon Flat	159.4
	Knoll/Morris	119.5
	Knoll/Ray	119.5
	Miami/Pinal	119.5
	Miami/Pinto Valley	119.5
	Moonshine/Pinal	159.4
	Oak Flat/Trask/Superior	164.3
	Ray/Superior	164.3
	Silver King/Superior/Corlete	164.3 164.3
	Silver King/Superior/Carlota Carlota/Pinto Valley	164.3
	Spurlock/Superior	164.3
	Spunock/Superior	104.3
230 kV	Agua Fria/Alexander	360.0
	Agua Fria/Westwing	880.4
	Agua Fria/White Tanks	832.6
	Alexander/Deer Valley ¹	720.0
	Anderson/Kyrene	796.7
	Anderson/Orme #1	796.7
	Anderson/Orme #2	796.7
	Brandow/Kyrene	725
	Brandow/Papago Buttes	637.4
	Brandow/Pinnacle Peak #1	362.5
	Brandow/Pinnacle Peak #2	362.5
	Brandow/Ward	362.5
	Browning/Dinosaur	796.7
	Browning/Santan	936.3
	Corbell/Kyrene	796.7

	Corbell/Santan Deer Valley/Pinnacle Peak Deer Valley/Westwing Eldorado/Mead2 Goldfield/Silver King Goldfield/Thunderstone #1 Goldfield/Thunderstone #2 Kyrene/Papago Buttes Kyrene/Knox ⁶ Liberty/Rudd Orme/Rudd #1 Orme/Rudd #2 Papago Buttes/Pinnacle Peak Rogers/Thunderstone	637.4 720 796.7 988.0 362.6 416.3 416.3 796.7 776.8 637.4 832.6 832.6 796.7 416.3
	Rudd/White Tanks Santan/Thunderstone Schrader/Kyrene Schrader/Santan	833 725 832.6 832.6
500 kV	Coronado/Silver King Cholla/Colorado ³ Eldorado/Mohave ² Hassayampa/Jojoba/Kyrene Hassayampa/Pinal West ⁹ Browning/Kyrene ⁷ Browning/ Silver King Moenkopi/Westwing ⁴ Navajo/Moenkopi ⁴ Navajo/Westwing ⁴ Palo Verde/Westwing #1	1732.1 1732.1 158 2304.0 672.0 1732.1 2304 712
	Palo Verde/Westwing #1 Palo Verde/Westwing #2 Mead/Perkins/Westwing ⁵ Palo Verde/Rudd ⁸	2598.1 2598.1 1671.0 1200.0

Notes:

SRP has use of 50% of this line. SRP's entitlement is shown.

SRP has transmission rights equivalent to its Mohave entitlement. That entitlement is shown.

The limiting component is a 2000 amp line trap.

- These three lines make up the Navajo Southern Transmission System. The total capability of this system is 1860 MVA. SRP's entitlement is 38.3% or 712 MVA.
- Two phase shifters of 650 MVA are connected to the line. A total capacity of the two-phase shifters is 1300 MVA and SRP's entitlement is 18.1% or 236 MVA for the lines and phase shifters. The system is being operated with these phase shifters bypassed. This is the current rating.
- APS provides transmission service through a transmission service agreement.
- The circuit is limited by a 2000 amp breaker open fail contingency.
- SRP owns 50% of this line. Total capacity of PL-RUD is 2400MW, SRP's entitlement is 1200.
- ⁹ Total capacity of HAA-PINAL WEST is 672MW for 500/345kV transformer.

SALT RIVER PROJECT EXISTING RENEWABLE DATABASE

	NUMBER	RATING	BATTERY
ECONOMIC OFF GRID PV APPLICATION			
		•	
Water Delivery Recorders	48	2 watts	1.2 amp hr
Rain and Snow Gauges	20	10 watts	26 amp hr
Ground Water Level Recorders	4	5 watts	6.0 amp hr
Water Measurement Recorder-Granite Reef	5	2 watts	1.2 amp hr
Monitoring Wells 1,2, &3; NE-1, NE-2)			
Recharge Facility - Pima Indian Reservation			
Water Measurement	1	50 watts	105 amp hr
Ft. McDowell Delivery (WUA SCADA)	1	50 watts	105 amp hr
Ft. McDowell Return (WUA SCADA)	1	50 watts	105 amp hr
Dead Horse Ditch (WUA SCADA)	1	100 watts	105 amp hr
Agua Fria (WUA SCADA)	1	50 watts	105 amp hr
Consolidated Canal Tail (WUA SCADA)			
Nitrate Measurements			
Mobile Nitrate (5-6) (WUA SCADA) (decommissioned)			
Nitrate (5-10) (WUA SCADA) (decommissioned)			
Communications	1	320 watts	1000 amp hr
Estrella Mountain (Microwave/Radio)			
, , ,			
Notes:			
1) All sites are 12 Vdc			
2) WUA SCADA sites use radios to communicate to			
WUA SCADA master station			
3) Rating - power per module(s)			

R&D PV PROJECTS			=
Residential grid-connected roof-mounted PV System on the Chandler Research Residence (SRP owned facility) (Decommissioned)	1	1 kW dc	-
Solar Heat Pump Project Demonstration of PV assisted variable speed 5 ton heat pump system on a customer owned residence - (field testing completed January 1996-system decommissioned)	1	3 kW dc	-
Photovoltaic-Battery System Demonstration Demonstration to determine effective ways to use PV- Battery Systems to dispatch PV energy - 2.4 kW dc with 25.2 kwh energy storage (Decommissioned)	1	2.4 kW dc	1050 amp hr
South Mountain Community College PV Power System	1	2 kW dc	
Residential Photovoltaic Power System - AC Module Technology	1	1 kW	-

R&D PV PROJECTS (cont'd)	1	2 kW	
Residential Grid Connected PV System SRP Chandler House	•	2 11 11	
	1	1 kW	
Scottsdale Community College PV Power System	1	1 kW	
Cesar Chavez High School PV Power System	1	1 kW	
SRP Credit Unit PV Power System	6	1 kW ea	
Residential Model Home – PV Power System (Project completed – PV Systems transferred to Home Builder)			
Chandler Research House PV Upgrade	1	2 kW	
ASU East PV	1	1kW	
Arizona Falls PV	1	2kW	
SUSTAINABLE PORTFOLIO PROGRAMS			
Agua Fria PV Power Plant (completed March 2001)	1	200 kW	
Tri-Cities Landfill Gas Facility (2001)	1	4 MW	
Rogers PV Power Plant 1 (Relocated to Rogers Substation) Rogers PV Power Plant 2 (Relocated to Rogers Substation)	1 1	100 kW 100 kW	
Solar Choice Plant 1 &2 – RELOCATED (Renamed – now Rogers Plant 1 & 2)			
Mesa Red Mountain Library PV Power Plant (2003)	1	25 kW	
Phoenix Park & Ride PV Plant (2003)	1	102 kW	·
Arizona Falls Hydroelectric Plant (2003)	1	750 kW	
ASU East Campus Molten Carbonate Fuel Cell (2004)	1	250 kW	
Rogers Solar Park PV Power Plant 3 (2004)	1	200kW	
Coronado Generating Station PV (2005)	1	25 kW	
Tempe Warehouse PV (2005)	1	75kW	
Wind Power Purchase Agreement	1	50MW	
Geothermal Power Purchase Agreement	1	25MW	
U.S. Bureau of Reclamation PV Plant (2006)	1	10 kW	·

Scottsdale Senior Center (2006)	1	32 kW	
Bartlett Dam Low Impact Hydro Plant (2006)	1	45 kW	
Scottsdale School District - Arcadia H.S. Concession Stand	1	7.8kW	
Power Operations Building PV (2008)	. 1	75 kW ac	
Maryvale YMCA PV (2008)	1	9.4 kW ac	
Habitat for Humanity PV (2008)	7	3.3kW ac/ea	
CUSTOMER SOLAR INCENTIVE PROGRAMS			
EarthWise Solar Energy Program: Solar Electric Systems (through 2008)	427	1609.3 kW ac	
EarthWise Solar Energy Program: Solar Water Heating Systems (through 2008)	846	1337.2 kW (approx. equivalent)	
<u>PARTICIPATION PROJECTS</u>			
Solar Two - Central Receiver (Solar Thermal) (Project Completed)		10 MW	
Santa Clara Molten Carbonate Fuel Cell Demonstration (Project Completed)		1.8 MW	
EPRI – ASU East Residential Fuel Cell RD&D Project (ongoing)	1	5 kW	
ALLIANCES & INDUSTRIAL PARTNERSHIPS			
EPRI - Member: - Renewable Technology Options and Green Power Marketing			
PVUSA - Participation in utility-DOE consortia to evaluate emerging module technologies and grid-connected utility scale systems in utility environment - Member of PVUSA Technical Review Committee (Project Completed)			
ALLIANCES & INDUSTRIAL PARTNERSHIPS (cont'd)			
Solar Two - Member Solar Two Steering Committee and Technical Advisory Committee (Completed)			

Solar Electric Power Association - Participant in Solar Electric Power Association Work Groups (formerly UPVG) IEEE SCC21 Working Group P1547 - Distributed Resources and Electric Power Systems Interconnecting			
(concluded) Residential Fuel Cell Demonstration Project			
CASU, EPRI ACORE – American Council on Renewable Energy	1	5kW	-
8,		1	
MONITORING	1		
<u>MONITORING</u>	-		
Solar One (J F Long) A privately owned photovoltaic system located within		160 kW dc	
SRP's service territory - SRP is monitoring system energy production (System not currently operational)			
SOLAR THERMAL ELECTRIC PROJECTS			
Sun dish project (decommissioned 2005) Solar dish technology	1	25 kW	
SOLAR THERMAL WATER HEATING			
Roof integrated thermo	3	1 kW ea	
Siphon prototype water heating system (2003)		(equivalent)	

SALT RIVER PROJECT AGRICULTURAL IMPROVEMENT AND POWER DISTRICT

BUYBACK SERVICE RIDER

SUPPLEMENTAL TO RESIDENTIAL PRICE PLANS E-23 AND E-26 GENERAL SERVICE PRICE PLANS E-32 AND E-36, LARGE GENERAL SERVICE PRICE PLANS E-61, E-63 AND E-65

Effective: November 1, 2004

APPLICABILITY:

To those cogeneration and small power production customers served by SRP under Standard Price Plans E-23, E-26, E-32, E-36, E-61, E-63, and E-65 who purchase power and energy provided by SRP and who are qualified to sell power and energy back to SRP.

CONDITIONS:

- 1. To segregate load between firm service and buyback service, two or more meters are required. The customer's purchases from and sales to SRP must be measured separately. The customer is required to provide a metering service entrance for all meters and pay the costs for the additional meter(s).
- 2. An Interconnection/Generation Agreement with the customer is required for service under this rider.
- 3. The customer will pay SRP for interconnection costs prior to commencement of service under this rider. Interconnection costs include but are not limited to reasonable costs of connection, switching, relaying, metering, transmission, distribution, safety provisions, engineering studies and administrative costs incurred by SRP directly related to the installation of the physical facilities necessary to permit interconnected operations.

CREDIT:

Buyback Credit = \sum [(Hourly Buyback Energy) X (Hourly Indexed Energy Price - \$0.00017/kWh)]

where:

Hourly credits are summed across all hours in the billing cycle. Hourly credits are the product of the hourly energy sold to SRP and the adjusted Hourly Indexed Energy Price. The adjusted Hourly Indexed Price is the product of the Dow Jones Firm On-Peak or Firm Off-Peak Price at Palo Verde (or another comparable index if the Dow Jones Index is no longer available), multiplied by the Hourly Pricing Percentage. The Hourly Pricing Percentage "shapes" the Dow Jones On-Peak and Off-Peak Prices, based on historical hourly price relationships published by the California Power Exchange (CA PX) for the Palo Verde Day Ahead Market Clearing Price Post Congestion from April 1998 until January 2001, when the CA PX discontinued operations.

Buyback Service Rider

Page 2

Published: 11/1/2007

The price adjustment of \$0.00017/kWh represents the cost incurred by SRP for scheduling, system control, and dispatch services.

ADJUSTMENTS:

SRP increases or decreases billings under this schedule in proportion to any taxes, fees, or charges (excluding federal or state income taxes) levied or imposed by any governmental authority and payable by SRP for any services, power, or energy provided under this schedule.

RULES AND REGULATIONS:

Service under this schedule is in accordance with the terms of SRP's Rules and Regulations, including any amendments.

SALT RIVER PROJECT AGRICULTURAL IMPROVEMENT AND POWER DISTRICT

RESIDENTIAL SOLAR BUYBACK SERVICE RIDER

SUPPLEMENTAL TO RESIDENTIAL PRICE PLAN E-23 AND E-26

Effective: June 1, 2004

APPLICABILITY:

To solar electricity conversion systems with an Alternating Current electrical peak capability of ten kilowatts or less. Limited to customers served by SRP under Standard Price Plan E-23 or E-26 who purchase power and energy provided by SRP and who are qualified to sell power and energy back to SRP. Not available to other customers.

CONDITIONS:

- 1. To segregate load between on-peak and off-peak periods, two or more meters may be required for Buyback Service under the E-26 Price Plan. The customer is required to provide a metering service entrance for all meters.
- 2. An Interconnection/Generation Agreement with the customer is required for service under this rider.
- 3. The customer may pay SRP for interconnection costs prior to commencement of service under this rider. Interconnection costs include but are not limited to reasonable costs of connection, switching, relaying, metering, transmission, distribution, safety provisions, engineering studies and administrative costs incurred by SRP directly related to the installation of the physical facilities necessary to permit interconnected operations.
- 4. The customer's total generation output is sold directly to SRP and the customer's total electric requirements are met by sales from SRP.

NET METERING METHOD:

The kWh delivered to SRP shall be subtracted from the kWh delivered from SRP for each billing cycle. If the kWh calculation is net positive for the billing cycle, SRP will bill the net kWh to the customer under the applicable price plan, Standard Price Plan E-23 or E-26, for which they take service. If the kWh calculation is net negative for the billing cycle, SRP will credit the net kWh from the customer at an average market price. Net negative kWh will not be transferred to subsequent months.

CREDIT:

Residential Solar Buyback Credit = Excess kWh for the Bill Cycle * (Average Monthly Market Price - \$0.00017/kWh)

Residential Solar Buyback Service Rider

Page 2

Published: 11/1/2007

where:

- Excess kWh for the Bill Cycle is equivalent to the net negative kWh for the bill cycle.
- Average Monthly Market Price is calculated to be a simple average of the Daily On-Peak Market Price over the bill cycle. Daily prices will be taken from the Daily Firm On-Peak Price at Palo Verde published by Dow Jones (or another comparable index if the Dow Jones Index is no longer available).
- The price adjustment of \$0.00017/kWh represents the cost incurred by SRP for scheduling, system control, and dispatch services.

ADJUSTMENTS:

SRP increases or decreases billings under this schedule in proportion to any taxes, fees, or charges (excluding federal or state income taxes) levied or imposed by any governmental authority and payable by SRP for any services, power, or energy provided under this schedule.

RULES AND REGULATIONS:

Service under this schedule is in accordance with the terms of SRP's Rules and Regulations, including any amendments.